
AfterOMPT: An OMPT-based tool for
fine-grained tracing of tasks and loops

Igor Wodiany, Andi Drebes, Richard Neill, Antoniu Pop

International Workshop on OpenMP 2020

2

● Need for precise profiling to identify performance
anomalies

● OMPT allows for the implementation of portable profiling
tools for OpenMP applications:
– Few OMPT-based tools available
– OMPT provides only limited information on loops

● Existing OpenMP profiling tools:
– non-portable across run-times (e.g. Intel VTune)
– no precise information on loops (e.g. Score-P)
– not suitable for certain analysis (e.g. Grain Graphs)

Introduction

International Workshop on OpenMP 2020

3

● OMPT defines a set of callbacks signatures and
declarations, e.g.

● It allows for external tools to link custom code to each
callback, to be invoked by the run-time at execution-
time

OMPT

International Workshop on OpenMP 2020

typedef void (*ompt_callback_thread_begin_t) (
 ompt_thread_t thread_type,
 ompt_data_t* thread_data);

typedef void (*ompt_callback_task_schedule_t) (
 ompt_data_t*prior_task_data,
 ompt_task_status_tprior_task_status,
 ompt_data_t*next_task_data);

OpenMP 5.0 Specification https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

4

● Currently only supported via the generic callback
ompt_callback_work, simply dispatched at start and end
of the loop

● Misses important information specific to the loop and its loop
chunks:
– The loop's iteration space
– Partitioning of the iteration space into chunks
– Mapping of those chunks onto CPUs
– The execution interval of each chunk

● Extension to OMPT proposed before [1]
[1] Langdal, P.V., Jahre, M., Muddukrishna, A.: Extending OMPT to support grain graphs. In: International Workshop on OpenMP. pp. 141–155. Springer (2017)

OMPT Loop Tracing is Limited

International Workshop on OpenMP 2020

5

● AfterOMPT – Aftermath-based profiling tool
that implements the OMPT interface

● Implementation of the OMPT extension for
loop tracing

● Two case studies supporting extension of
the OMPT interface

● Overhead analysis of our profiling tool

Our Contributions

International Workshop on OpenMP 2020

6

● Implements OMPT interface
● Uses Aftermath tracing API for data

collection
● Enables tracing of loops, tasks and

synchronization events

AfterOMPT

International Workshop on OpenMP 2020

7

● Tracing and visualization tool for performance
analysis

● OpenMP previously supported, but not portable,
as an instrumented run-time was required

● New version extended to represent OMPT events

● Available for free:
https://www.aftermath-tracing.com/

Aftermath

International Workshop on OpenMP 2020

https://www.aftermath-tracing.com/

8

Aftermath

International Workshop on OpenMP 2020

#pragma omp parallel num_threads(8)
{
 #pragma omp for schedule(static, 2) // First loop
 for(int i = 0; i < 32; i++) { foo(); }
 foo();
 #pragma omp for schedule(dynamic, 2) // Second loop
 for(int i = 0; i < 32; i++) { foo(); }
 foo();
}

1. Timeline
2. CPU Cores
3. Static Loop
4. Dynamic Loop

1

2 3 4

Each loop allocates 4 iterations per worker = 2 loop chunks

9

● Enable more detailed and fine-grained (chunk-level) tracing
of OpenMP loops

● Based on the previous proposal by Langdal et al., however:
– We use *_begin and *_end callbacks
– We do not include the chunk creation time and the last

chunk marker

● Proof-of-concept implemented in LLVM 9.0 run-time and in
our tool

● Static loop tracing may require modification of the compiler

Proposed OMPT Extension

International Workshop on OpenMP 2020

10

typedef void (*ompt_callback_loop_begin_t) (
 ompt_data_t* parallel_data,
 ompt_data_t* task_data,
 int flags,
 int64_t lower_bound,
 int64_t upper_bound,
 int64_t increment,
 int num_workers,
 void* codeptr_ra);

typedef void (*ompt_callback_loop_end_t) (
 ompt_data_t* parallel_data,
 ompt_data_t* task_data);

Loop Callback

International Workshop on OpenMP 2020

Proposed Extension

11

typedef void (*ompt_callback_loop_chunk_t) (
 ompt_data_t* parallel_data,
 ompt_data_t* task_data,
 int64_t lower_bound,
 int64_t upper_bound);

Loop Chunk Callback

International Workshop on OpenMP 2020

Proposed Extension

12

● Concrete examples where more precise
loop tracing is needed

● Use cases focused on:
– Helping less experienced developers
– Making identification of performance

anomalies easier

Case Studies

International Workshop on OpenMP 2020

13

● IS benchmark from NPB
● Loop-based integer bucket sort
● Range of the input data changed to cause

an underutilization of some of the buckets

Case Study I: Imbalanced Loops

International Workshop on OpenMP 2020

14

Case Study I: Imbalanced Loops

International Workshop on OpenMP 2020

Execution of the full application

IS from NPB

15

Case Study I: Imbalanced Loops

International Workshop on OpenMP 2020

Execution of one loop instance

IS from NPB

16

● Tracing of loop chunks allows to identify
anomalous iterations

● This lead to an easy identification of
“overflowing” buckets

● 4x more buckets = 1.22x speed-up

● Could be done without the new callback, but
extension makes it easy to pinpoint the problem

Case Study I: Imbalanced Loops

International Workshop on OpenMP 2020

17

Case Study I: Imbalanced Loops

International Workshop on OpenMP 2020

Initial code (top) and optimized version (bottom) – full application

IS from NPB

18

Case Study I: Imbalanced Loops

International Workshop on OpenMP 2020

Initial code (top) and optimized version (bottom) – one loop

IS from NPB

19

● Help the programmer choose the parallel
primitives with the best performance

● SparseLU benchmark from BOTS:
– Three implementations: task-based and loop-

based (static scheduling + dynamic
scheduling)

– Comparison of loop and task parallelism with
AfterOMPT

Case Study II: Loops vs Tasks

International Workshop on OpenMP 2020

20

Case Study II: Loops vs Tasks

International Workshop on OpenMP 2020

Loop parallelism with static scheduling

SparseLU from BOTS

21

Case Study II: Loops vs Tasks

International Workshop on OpenMP 2020

Loop parallelism with dynamic scheduling – loop granularity

SparseLU from BOTS

22

Case Study II: Loops vs Tasks

International Workshop on OpenMP 2020

Loop parallelism with dynamic scheduling – loop chunk granularity

SparseLU from BOTS

23

Case Study II: Loops vs Tasks

International Workshop on OpenMP 2020

Loop parallelism with dynamic scheduling – loop chunk granularity

SparseLU from BOTS

24

Case Study II: Loops vs Tasks

International Workshop on OpenMP 2020

Loop parallelism with dynamic scheduling – loop chunk granularity

SparseLU from BOTS

25

● Per iteration work does not change
● So the problem is the work imbalance
● Uneven distribution of iterations is clearly visible
● Solutions:

– Ensure #cores divides #iterations
(what about performance portability?)

– Introduce task-based parallelism
● This concludes cases studies on loop parallelism

Case Study II: Loops vs Tasks

International Workshop on OpenMP 2020

26

Case Study II: Loops vs Tasks

International Workshop on OpenMP 2020

Loop parallelism with static scheduling (top) and task parallelism (bottom)

SparseLU from BOTS

27

● Tested on NPB* and BOTS** benchmarks

● Measured as an average relative increase of the
execution time for 50 samples (0% = no
overhead)

● Execution time measured as a wall clock time

* C implementation of NPB from https://github.com/benchmark-subsetting/NPB3.0-omp-C
** https://github.com/bsc-pm/bots

Overhead Analysis

International Workshop on OpenMP 2020

https://github.com/benchmark-subsetting/NPB3.0-omp-C
https://github.com/bsc-pm/bots

28

Overhead Analysis

International Workshop on OpenMP 2020

(lower is better)

29

● Overhead less than 5% for 9 out of 15 benchmarks

● Programs with small loop chunks (LU, SP) and small
tasks (fib, floorplan and nqueens) incur a high
overhead

● E.g., floorplan: ~10% of cycles spent in the task is an
overhead (200 cycles overhead vs 2200 cycles work)

● Fixed high overhead and equal work per task can be
acceptable

Overhead Analysis

International Workshop on OpenMP 2020

30

● Proposed an OMPT extension with new callbacks for precise
and fine-grained loop tracing; and motivating use cases

● Presented AfterOMPT, an OMPT-based tool for fine-grained
tracing of tasks and loops that implements the proposed
extension

● Future work: hardware events profiling and task graph
visualization

● GitHub: https://github.com/IgWod/ompt-loops-tracing

● Any questions? igor.wodiany@manchester.ac.uk

Conclusion

International Workshop on OpenMP 2020

https://github.com/IgWod/ompt-loops-tracing
mailto:igor.wodiany@manchester.ac.uk

31

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

