
AfterOMPT: An OMPT-based tool for
fine-grained tracing of tasks and loops

Igor Wodiany1 (�), Andi Drebes2, Richard Neill1, and Antoniu Pop1

1 Department of Computer Science, The University of Manchester, United Kingodom
{igor.wodiany,richard.neill,antoniu.pop}@manchester.ac.uk

2 Inria and École Normale Supérieure, Paris, France
andi.drebes@inria.fr

Abstract. We present AfterOMPT, a new trace-based tool for analyz-
ing the execution of OpenMP applications using the OMPT interface to
capture accurate information on loop partitioning, distribution of itera-
tion spaces across workers, task scheduling, and synchronization events.
In contrast to previous works that rely on specific, instrumented runtime
libraries, our tool is able to collect information from any runtime imple-
menting the OMPT interface. In order to visualize the information from
the collected traces, we have extended the Aftermath performance anal-
ysis tool with appropriate renderers for OMPT events. We also propose
an extension of the OMPT interface for the collection of more detailed
information on scheduled OpenMP loops. Experimental results show a
tracing overhead of under 5% for the majority of studied benchmarks, in-
creasing more significantly for those with highly fine-grained workloads.

Keywords: OpenMP · OMPT · Performance analysis · Tracing

1 Introduction

There are many factors that impact the performance of OpenMP [15] pro-
grams which may result in an inefficient utilization of the executing system, such
as a limited amount of parallelism exposed by the application itself, interactions
with the runtime system, locality of memory accesses, and sub-optimal use of
explicit parallel constructs. Such performance bottlenecks are difficult or even
impossible to detect using static analysis and thus require tracing of dynamic
events and post-mortem analysis. In order to precisely identify the source of
performance issues, it is further necessary to be able to attribute such events to
specific instances of parallel constructs and to the OpenMP workers.

Aftermath [5] is a trace-based tool for performance analysis of parallel pro-
grams and has been extended for OpenMP programs in prior work [4]. The
tool provides developers with accurate traces for loop and task execution and

This work was supported by the grant EuroEXA H2020-754337. Antoniu Pop is
funded by the RAEng University Research Fellowship. Igor Wodiany is supported
by the Department of Computer Science Kilburn Scholarship and the University of
Manchester Presidents Award.

2 I. Wodiany et al.

is able to capture synchronization events. Its ability to trace and visualize the
distribution of loop iteration spaces across workers allows programmers to track
the origin of work imbalance caused by inappropriate chunk sizes, unsuited loop
scheduling strategies or a mismatch between data placement and work distribu-
tion on machines with non-uniform memory access. However, Aftermath relies
on an instrumented version of the OpenMP runtime to generate traces. This
comes with a cost for setting up the execution environment and bears the risk
of an outdated runtime library, as the instrumentation likely requires updating
with every new version of the runtime.

With the inclusion of the OpenMP Tools (OMPT) interface [7] in the OpenMP
standard, it became possible to develop portable profiling tools that can be at-
tached to any compatible runtime. The OMPT interface defines a set of callbacks
that are invoked by the runtime for specific events throughout the execution.
Tools can use this interface to capture information associated to these events
and to write this information to a trace file. In order to eliminate the need for a
specific, instrumented runtime for Aftermath tracing and thus provide a portable
tool for OpenMP performance analysis, we have developed AfterOMPT, a library
that implements the OMPT callbacks to collect dynamic events and write them
to a trace file using the Aftermath tracing API. We have further extended Af-
termath with OMPT-specific rendering functions that enables the visualization
of such traces.

While the set of callback functions specified by the OMPT interface covers
a basic set of OpenMP events, it is unsuited to capture dynamic information
about the distribution of loop iteration spaces across workers: the OMPT work
callback (ompt callback work) can only capture an aggregated execution of
all iterations assigned to a specific worker, without any loop-specific details.
The more recent dispatch callback (ompt callback dispatch) is an attempt to
mitigate this issue, but potentially incurs a high overhead as is is called at the
beginning of each loop iteration.

Langdal et al. [10] identified similar issues with OMPT in the context of
Grain Graphs, a chronogram-based tool for visualizing OpenMP applications
in the form of hierarchical graphs. Although their work provides specific im-
plementation details and detailed overhead analysis, it lacks concrete examples
on how information obtained from those callbacks can be used to optimize the
performance of applications.

In this work, we provide concrete case studies to make a case for extending
the tracing interface. Specifically, this paper makes the following contributions:

– We present AfterOMPT, a new Aftermath-based tool implementing the
OMPT interface for portable and detailed performance analysis.

– We present two case studies to support an extension of the tracing interface
with loop-related OMPT callbacks.

– We provide experimental results showing that the instrumentation overhead
is below 5% for the majority of our studied benchmarks.

The rest of the paper is organized as follows. Section 2 introduces After-
math and sets the terminology that AfterOMPT borrows from Aftermath. In

Tracing of tasks and loops with AfterOMPT 3

for (int k = 0 ; k < 2 ; k++) {
#pragma omp p a r a l l e l
{

#pragma omp for schedu le (static , 2) // Fir s t loop
for (int i = 0 ; i < 32 ; i++) { f oo () ; }
f oo () ;
#pragma omp for schedu le (dynamic , 2) // Second loop
for (int i = 0 ; i < 32 ; i++) { f oo () ; }
f oo () ;

}
}

Listing 1.1: Example with two loop constructs

Section 3, we discuss the implementation of our profiling tool and use of existing
and proposed OMPT callbacks. We then present two case studies in Section 4
illustrating how AfterOMPT can be used to collect and inspect OpenMP traces.
Tracing overhead is analyzed in Section 5. Related work, concluding remarks
and directions for future work are presented in Section 6 and Section 7.

2 Aftermath

Aftermath3 is a free and open source tracing and visualization tool for per-
formance analysis. The project has transitioned from a tool supporting a specific
set of parallel frameworks [5,4] to a framework-independent toolbox for build-
ing specialized tools for performance analysis. Multiple models can co-exist at
the same time and are supported by an extensible, template-based type system
for the definition of the trace format, trace processing and the in-memory data
model. The four main components of the tool are:

– A type system, offering a declarative description of on-disk and in-memory
tracing data structures and their relationships, from which functions for
creation, management, storage and processing of trace data are generated.

– A tracing library that defines set of functions to create, write and read Af-
termath trace files used for the instrumentation of runtimes and for building
data capturing tools.

– A rendering library providing a set of functions to visualize trace data in
graphical user interfaces or tools for bulk rendering.

– A configurable graphical user interface (GUI), used for trace inspection and
performance analysis by the end user. The GUI is defined by a customizable
interface file that assembles different graphical widgets and a data-flow graph
for trace processing, both of which can be modified on-the-fly during execu-
tion. Multiple GUI definitions and data-flow graphs can co-exist, providing
specialized tools for specific frameworks or specific types of analyses.

It is worth noting that the timeline in the Aftermath GUI is hierarchical and
nodes (e.g., worker threads, cores) can be collapsed, so that statistics shown on a

3 https://www.aftermath-tracing.com/

https://www.aftermath-tracing.com/

4 I. Wodiany et al.

Fig. 1: Visualization of iteration periods from Listing 1.1 in the Aftermath GUI:
(1) Timeline; (2) Worker Threads/Cores; (3) Execution of a single loop instance

lane are the accumulated values. As an example, consider three CPUs, with the
first one spending 40% of the time in function f , the second one spending 30%
of the time also in f , and the third one spending 60% of the time in function g
for the same time interval associated to a pixel. The non-collapsed view would
show three lanes: two with the pixel in the colour associated to f and another
one with the pixel in the colour associated to g. When collapsed, the dominant
function becomes f and the pixel would be rendered with the colour of f . Using
this approach a large number of cores can be divided into smaller groups and
the user can expand/collapse nodes to adjust granularity of the displayed data.

Previous support for OpenMP in Aftermath relied on a specific, instrumented
OpenMP runtime to generate the trace files. In this paper, we present an OMPT-
based tool that can be used to trace any runtime supporting OMPT. To this
end, we extended the Aftermath type system to represent OMPT events and im-
plemented callbacks with calls to Aftermath’s tracing library. Since our OMPT-
based tool is intended to entirely replace the legacy OpenMP support in After-
math based on the instrumented runtime library, we refer to both our tool and
Aftermath simply as Aftermath for the remainder of the paper.

Throughout the paper, we use the terms loop instance, iteration set, iteration
period, task instance and task period introduced in [4] and defined as follows. We
say that a parallel loop is instantiated when control flow reaches the instructions
associated with a static definition of a parallel loop in the source code and its
iteration space is distributed across workers according to its scheduling strategy.
Each such encounter is defined as a loop instance. Similarly, we speak of a task
instance when referring to the dynamic instructions executed by a task statically
defined in the source code. The iteration space of a loop instance is split into
iteration sets, each of which is assigned to exactly one worker. The iteration set
corresponds directly to the loop chunk. The execution of an iteration set consists
of one or more iteration periods, defined as contiguous intervals of execution of
dynamic instructions of the loop associated to the loop instance. For flat loops
each iteration set consists of exactly one iteration period, that corresponds to
the execution of a specific loop chunk. For loops containing loops’ nests the
iteration set is split between multiple iteration periods, representing execution

Tracing of tasks and loops with AfterOMPT 5

on the given nest level. Similarly, execution of a task instance is split into one
or more task periods.

To illustrate these concepts, consider the Listing 1.1 where two loops are each
executed twice. This results in four loop instances in total—two for the first loop
and two for the second loop. Each instance is split into 16 distinct iteration sets
with each set containing two iterations invoking the function foo(). Since the
loop body does not contain nested parallel regions and does not spawn tasks,
each iteration set will be associated with one continuous iteration period.

A visualization of the execution is given in Figure 1. The four distinct loop in-
stances are presented as beige and green regions executing on a total of 8 worker
threads, each identified by their thread ID on the left side of the figure. Those
coloured regions represent alternating iteration periods, in this case correspond-
ing directly to loop chunks (iteration sets). The thin yellow line after each loop
instance represents the loop’s implicit barrier, while the rightmost yellow line
represents the barrier at the end of the parallel section.

3 Tracing Using OMPT Callbacks

In this section, we present the implementation of AfterOMPT based on the
OMPT interface. We discuss which OMPT callbacks are used and what infor-
mation is captured through the interface. We also present workarounds for cases
in which additional information is required, but is not provided by OMPT.

3.1 Labeling instances

The ability to associate dynamic events with specific instances of OpenMP
constructs and to combine the data captured from multiple callbacks requires a
mechanism to reliably identify particular instances. AfterOMPT implements a
labeling mechanism for this, associating each instance of a supported OpenMP
construct with a unique label that identifies it. Each label is composed of two
components: the thread ID of the worker instantiating the construct and the
value of the worker’s monotonically increasing sequence counter. Since the thread
ID and the counter value are unique and private to a worker, workers can generate
labels independently and concurrently without any need for synchronization.
Once an instance has been created, its label is stored within an associated task
data structure. Any related event that is captured through an OMPT callback
function afterwards has access to the task’s data and can thus store the serialized
event data along with a reference to the instance in the trace file.

3.2 Tracing loops

The current OMPT interface provides very limited information on loops via
the ompt callback work callback function. Neither the loop bounds nor the par-
titioning of the iteration space into chunks are exposed, which prevents tracing
the distribution of the iteration space using OMPT alone. While this issue was
identified in [10], and we base our work on that proposal, we propose further
changes to the callback signatures necessary to generate more complete traces.

6 I. Wodiany et al.

typedef void (∗ ompt ca l l ba ck l oop beg in t) (
ompt data t∗ pa r a l l e l d a t a , ompt data t∗ task data ,
int f l a g s ,
i n t 6 4 t lower bound , i n t 6 4 t upper bound ,
i n t 6 4 t increment ,
int num workers ,
void∗ codept r ra) ;

typedef void (∗ ompt ca l l back l oop end t) (
ompt data t∗ pa r a l l e l d a t a , ompt data t∗ ta sk data) ;

Listing 1.2: Callback signatures for loop tracing

For loop tracing, AfterOMPT uses two callbacks with signatures as defined
in Listing 1.2, one invoked at the beginning of the loop and one invoked at the
end of the loop. In line with the work of Langdal et al. those callbacks replace the
current work callback whenever a loop is executed. However, rather than using
the endpoint argument as the authors proposed, we use two distinct callbacks
with names ending with * begin and * end. This simplifies the implementation
by reducing the data required to be traced at the end of the loop, as work-sharing
information is instead provided implicitly through the bounds, the increment, the
number of workers and the flags indicating the schedule. This defines a compact
representation from which the distribution across workers can be recovered by
the callback function, compared to an explicit set of chunks and distribution.

The codeptr ra argument refers to an address of an instruction of the loop
body and can be used as a unique identifier for the source code location of the
instantiated loop construct.

In order to trace loop chunks, we propose an additional callback function
with the signature shown on Listing 1.3. In contrast to the signature proposed by
Langdal et al., we do not include a parameter marking the final chunk, since this
chunk is always followed by the loop end event and can thus be recovered post-
mortem. We also omit the loop chunk creation time parameter, as we currently
do not use it, however we aim to investigate potential use cases in the future.

Using this information, iteration sets can be recovered by mapping each oc-
currence of the loop chunk event into the new iteration set. To recover iteration
periods we consider four cases: (1) The new period starts when the chunk gets
dispatched and finishes when the next chunk gets dispatched; (2) The new pe-
riod starts when the chunk gets dispatched and finishes when the loop ends; (3)
The new period starts when the loop at the nest level n ends and finishes when
the loop at the nest level n − 1 ends; (4) The new period spans the execution
time between the end of one loop and the start of the another loop at the same
nest level, e.g., for{ for{} /* Period (4) */ for{} }

3.3 Tracing tasks

While the detailed tracing of loops requires an extension of the OMPT inter-
face, tasks can be traced using the existing callbacks ompt callback task create

and ompt callback task schedule. These events are captured as discrete events

Tracing of tasks and loops with AfterOMPT 7

typedef void (∗ ompt ca l lback loop chunk t) (
ompt data t∗ pa r a l l e l d a t a , ompt data t∗ task data , i n t 6 4 t
lower bound , i n t 6 4 t upper bound) ;

Listing 1.3: Callback signature for the tracing of loop chunks

in the trace, with the task instance beginning and end events associated post-
mortem, to reduce the run-time overhead. All instances of a given task construct
can also be retrieved post-mortem by iterating over all task-creation events for
the task’s address, as provided by the codeptr ra parameter within the task cre-
ation callback function. Tasks periods can be easily determined from scheduling
points captured through the task schedule callback.

3.4 Tracing synchronization events and regions

Barriers, taskwait states, critical sections, master, single and parallel regions
can be accurately traced by recording the information provided by the associated
OMPT callbacks and by matching the invocations of the callbacks indicating the
beginning of an event with the invocation of the callback indicating its end.

4 Case Studies

We now present two case studies using the tracing interface and show that
AfterOMPT provides performance insights which are unavailable to developers
without the proposed extensions of the OMPT interface for loop-related call-
backs. In the first study, we show how an uneven distribution of work across
the iteration space of a parallel loop can be inspected with our tool. The sec-
ond study shows how AfterOMPT can be used to assess the effect of pipeline
parallelism on the performance of an application.

4.1 Experimental Setup

We implemented new callbacks for dynamic loops and loop chunks, and static
loops in the LLVM 9.0 OpenMP runtime4. This work is based on the implemen-
tation of the Aftermath instrumented OpenMP runtime [4].

For static loops, each worker can determine its part of the iteration space
independently from the others, solely based on its thread ID, the chunk size, the
loop bounds and the loop increment. Since this does not require invocation of
the OpenMP runtime, static loops cannot be traced from within the runtime and
require static instrumentation by the compiler. We have therefore used the mod-
ified version of Clang proposed in [10], where the compiler inserts the required
callback directly into static loops within the application.

An alternative approach, not used in this paper, that does not require the
modified compiler involves setting the compile-time schedule to runtime (with
schedule(runtime)) and then runtime schedule to static with a specific chunk

4 Artifacts and sources available at: https://github.com/IgWod/ompt-loops-tracing

https://github.com/IgWod/ompt-loops-tracing

8 I. Wodiany et al.

size. This forces the application to distribute the work using the runtime functions—
the same ones that are used by the dynamic scheduling.

For trace recording, processing and visualization, we have extended the lat-
est branch of Aftermath with new types representing OMPT events. To leverage
the existing OpenMP support in Aftermath and to avoid code duplication with
our new OMPT-based implementation, we have also added an extra processing
step in the Aftermath GUI that converts OMPT events into native Aftermath
OpenMP types. Finally, AfterOMPT comes as a standalone library that imple-
ments required callbacks with Aftermath tracing API to capture required data.

All experiments have been carried out on a platform with two Intel Xeon Sil-
ver 4116 processors, each of which has 12 cores (24 threads) running at 2.10 GHz.
The 112 GiB memory is split across 2 NUMA nodes. The system was running
Ubuntu 18.04.4 LTS with kernel version 4.15 and Hyper-Threading enabled.

For the case studies, we have limited the execution to 12 threads (6 physical
cores) on a single socket in order to improve readability of the visualized traces
and to exclude any NUMA-specific effects. The subsequent overhead analysis
has been carried out using all 48 threads (24 physical cores).

4.2 Identifying slow iterations in unbalanced loops

The first case study demonstrates how AfterOMPT’s loop tracing capabilities
can be used to inspect a non-uniform distribution of work across the iteration
space of a parallel loop. We illustrate this on the integer bucket sort (IS) from
the NAS Parallel Benchmark suite [3], version 3.4 with a custom data set.

The bucket sort algorithm sorts a sequence of N integer values by distributing
these values into K buckets, sorting each bucket individually and concatenating
the sorted buckets into a final, sorted sequence. The distribution into the buckets
is based on the maximum value Vmax of the input sequence: a value v is put into

the bucket with the index
⌊
(K − 1) · v

Vmax

⌋
. The amount of work required to sort

a bucket depends on the number of values in the bucket, which in turn depends
on the distribution of values of the input sequence.

The IS benchmark consists of three parallel loops in the main processing
function. Two loops distribute keys into buckets and one loop sorts one bucket
per iteration. In the following analysis, we show how AfterOMPT can be used
to determine an uneven data distribution in the IS benchmark and to determine
for which iterations the amount of work differs substantially.

To this end, we have first changed the range of generated integer values to
(1048576, 1064960)5. Since this range does not start at zero and does not end at
the hard-coded Vmax of the implementation, the buckets for low and high values
remain empty, while the buckets for “medium” values each receive a significant
part of the keys.

With the default parameters, the execution takes 2.58 s for the input class
C and the input range adjusted to the interval above. A visualization of the

5 Partial verification of this changed dataset fails as it relies on pre-defined ranks for
keys at specific locations, but full verification passes, so that we can assume that the
algorithm executes correctly.

Tracing of tasks and loops with AfterOMPT 9

(a) Before (full program)

(b) After (full program)

(c) Before (sub-optimal loop instance)

(d) After (optimized loop instance)

Fig. 2: Iteration periods before and after changing the number of buckets in IS
with bucket sorting loop instances marked in red

loop iteration intervals from the execution trace is given in Figure 2a. We have
outlined in red the first three loop instances which are sorting the buckets. For
each such instance, only two workers have significant iteration periods, indicated
by the green and beige intervals within the red rectangles. For the remaining
workers the visualization shows the alternating black and gray of the background,
which means that these workers are mostly idle. Outside of the red rectangles,
the loops process keys with a constant amount of work per iteration.

The zoomed visualization on the first imbalanced loop instance given in Fig-
ure 2c confirms the imbalance and clearly shows that two iterations are signifi-
cantly slower than most of the remaining iterations. Further inspection with our
tool shows that these are the iterations for buckets 128 and 129. The remaining

10 I. Wodiany et al.

1022 iterations processing the buckets 0 to 127 and 130 to 1023 are very short,
since these sort empty, or almost empty buckets.

The performance can be easily improved, simply by increasing number of
buckets from 1024 to 4096 as this effectively distributes the work for a single
bucket from the initial settings to more buckets and thus more workers. With
a higher number of buckets, the execution time can be reduced to 2.11 s, which
corresponds to a speedup of 1.22×. The absence of large gaps in the visualization
of the trace in Figure 2b confirms the improved work balance. The long iteration
periods from the original settings could be reduced by a factor of 3 with the
increased number of buckets.

In conclusion, the visualization of iteration periods helped identifying the
loop imbalance and allowed for attribution of the intervals to specific iterations
of a specific parallel loop in the code. Repeated tracing with changed settings
further allowed for rapid qualitative and quantitative evaluation of the changes.

4.3 Comparison of loop-based and task-based implementations

In the second case study, we illustrate how AfterOMPT can be used to eval-
uate and compare different implementations of the same benchmark. We use
the SparseLU benchmark of the Barcelona OpenMP Task Suite (BOTS) [6] and
compare two loop-based versions, using different schedules, with the unmodified,
task-based implementation. We first investigate the effect of the loop schedule in
our modified versions on the performance, before assessing the effects of pipeline
parallelism of the task-based version.

We produce a first loop-based implementation from the benchmark by com-
menting all task pragmas in the for-omp-tasks version of the application. This
results in a benchmark whose parallelism is exposed solely through parallel loops
with the default schedule, synchronized with barriers.

The execution time on our test system for this version is 2.08 s for default
input size (S1 = 50 × 50, S2 = 100 × 100). The visualization of the execution
trace provided in Figure 3a reveals significant work imbalance. Inspection of the
iteration periods shows that the bulk of the execution time is spent in the code
region executing the bmod function.

To mitigate the work imbalance, we have changed the default static sched-
ule (no schedule specified) to a dynamic schedule with a chunk size of a single
iteration (schedule(dynamic, 1)). This decreases the execution time to 1.81 s,
corresponding to a speedup of 1.15×. Although this represents a significant im-
provement, the gaps in the visualization of the execution trace after modification
shown in Figure 3b indicate that there is still potential for improvement. To iden-
tify the cause of the remaining imbalance, we investigate the iteration periods
shown in Figure 3c. The duration of the periods is relatively uniform, indicating
that the distribution of work is even across iterations. However, the barriers be-
tween loop instances have a significant impact as they cause a significant fraction
of the workers to idle if the number of available iterations is not a multiple of the
number of workers. Furthermore, the available parallelism decreases over time,
leaving more and more workers idle towards the end of the execution. Since the

Tracing of tasks and loops with AfterOMPT 11

(a) Iteration periods (static schedule)

(b) Loop instances (dynamic schedule)

(c) Iteration periods (dynamic schedule)

(d) Tasks of task-based implementation

Fig. 3: Traces for loop-based and task-based implementations of SparseLU

number of iterations is data-dependent, any statically configured chunk size or
loop schedule will lead to imbalance for certain problem instances.

The original, unmodified version the benchmark uses the parallel loops only
to spawn parallel tasks. The barrier only synchronizes task creation, but not
completion, thus exposing pipeline parallelism which allows all the workers to
be kept busy for most of the time (Figure 3d) and reduces the execution time
to 1.47 s (1.41× speedup). This shows that pipelining parallelism in the original
implementation has a significant impact on performance.

5 Overhead Analysis

To obtain meaningful traces, it is crucial that the tracing mechanism does not
perturb the execution of the application. In this section, we evaluate the tracing

12 I. Wodiany et al.

overhead using selected applications from BOTS [6] and the C implementation6

of the NPB 2.3 [3] benchmarks. In our experiments, we trace threads, task cre-
ation, task execution, the beginning and end of loops, and the beginning and end
of the execution of loop chunks via the callback functions thread {begin,end},
task create, task schedule, loop {begin,end} and loop chunk.

To stress the tracing mechanism for loops, we selected CG, EP, LU, MG and
SP, excluding BT and FT as they failed to build7, as well as IS as it does not
report its execution time.

For task-based benchmarks, we selected alignment, fft, fib, floorplan, health,
nqueens, sort, sparselu and strassen from BOTS. The uts benchmark was ex-
cluded as we encountered frequent application segmentation faults when run-
ning it on the experimental machine. We used the omp-tasks-tied version for the
BOTS benchmarks, except alignment and sparselu for which this version was
unavailable, and the for-omp-tasks-tied version was used instead.

Each benchmark was executed with default values, except for fib where N
was increased to 35 to avoid the high variation of the very short execution
for the default value. The largest available input files were used for the BOTS
benchmarks that require input files, except for uts, where small.input was used.
The NPB benchmarks operated on the C input class, with the exception of
SP which was given the A input class in order to avoid excessive experiment
duration. Each benchmark was executed 50 times, where for the same reason SP
was instead executed 20 times.

Figure 4 shows the relative mean increase of the execution time when tracing
is enabled, compared to the execution without tracing. The reported values were
obtained by dividing the execution time of each run of the benchmark with the
tool attached, by the mean execution time of 50 runs of the baseline (no tool
attached). The value above each bar indicates the mean relative change and error
bars indicate the standard deviation.

The relative overhead for three of the loop-based NPB benchmarks, CG, EP
and MG, was very low, with all three recording an increased execution time of
under 3%. A higher relative overhead was recorded for the remaining two NPB
benchmarks LU and SP : averaging 6.0% ± 4.0% for LU, and 35.2% ± 5.7% for
SP. The increased relative overhead for these benchmarks is due to their large
number of very fine-grained loop-chunks (especially for SP), resulting in a large
number of invoked callbacks relative to the overall work done.

The overhead results varied across the task-based BOTS benchmarks, with
values under 3% for alignment, fft, sort, sparselu and strassen, and values up
to 24% for the remaining benchmarks. As with the NPB results, the more sig-
nificant relative overheads resulting for these benchmarks is due to their large
number of short-lived task instances, thereby invoking significantly more tracing-
callbacks relative to their workload. Analysis of the floorplan benchmark shows
that the average duration of an AfterOMPT tracing-callback was around 200

6 https://github.com/benchmark-subsetting/NPB3.0-omp-C
7 The compilation error is caused by the potential bug in the unofficial C port of the

benchmarks and does not appear in the official Fortran implementation.

https://github.com/benchmark-subsetting/NPB3.0-omp-C

Tracing of tasks and loops with AfterOMPT 13

EP
*

CG
*

M
G
*

LU
*

SP
*

ali
gn

men
t
†

sp
ar

sel
u
†

str
as

sen
†

fft
†

so
rt
†

uts
†

hea
lth

†
fib

†

floor
plan

†

nquee
ns
†

−10
−5

0
5

10
15
20
25
30
35
40
45
50

-0.12
1.90 2.11

6.05

35.20

-0.65 0.56

2.53
3.00

3.15 3.90

6.95

12.4

21.2423.34

R
el

.
in

cr
.

o
f

ex
ec

.
ti

m
e

[%
]

Fig. 4: Profiling overhead for the selected benchmarks from NPB 2.3 and BOTS
(*loop-based, †task-based)

cycles, compared to the average total duration of a task instance (including the
tracing overhead) of around 2400 cycles. All of these measures include the over-
head of the OMPT interface itself. For more details, including cases with empty
callbacks and OMPT disabled, we refer to [10].

In conclusion, the average overhead of AfterOMPT was found to be under 5%
for the majority of the benchmarks (9 out of 15), increasing to under 7% for two
further benchmarks, and greater than 10% for only four of the most fine-grained
benchmarks. As the AfterOMPT tracing infrastructure incurs an overhead of
only around 200 cycles per callback invocation, its generally low impact on the
overall program execution time—while dependent on the workload granularity—
means that it is highly suitable for tracing and analysing many target OpenMP
applications. Moreover the overhead does not depend on number of threads, as
synchronization within the tool is kept to minimum—one critical section per
thread initialization —meaning each thread is traced independently.

6 Related Work

Langdal et al. [10] were first to investigate extending the OMPT interface
with loop related callbacks. While they discuss implementation details and over-
head analysis for the potential new loop callbacks, they do not provide detailed
use cases to support proposed changes. We complement their work by presenting
detailed scenarios, showing how information associated with those callbacks are
useful in practice.

Their work was done in the context of Grain Graphs [12]. Compared to After-
math, Grain Graphs is a chronogram-based application that represents OpenMP
programs in a hierarchical graph form. It allows detection of limited parallelism,
load imbalance and synchronization issues, however the visual representation
does not attribute profiled constructs to specific cores. Aftermath presents traces

14 I. Wodiany et al.

on per worker timelines allowing to detect additional anomalies, such as problems
related to NUMA.

Score-P [11] [8] is a profiling and event tracing infrastructure for HPC ap-
plications. It allows tracing of OpenMP applications with either by POMP2 [9]
instrumentation using source-to-source compiler or with OMPT interface. It gen-
erates traces in the formats (OTF2 or CUBE4) compatible with several analysis
tools such as Vampir [13] or TAU [13] toolkit. However Score-P does not support
tracing of loops using OMPT with granularity offered by AfterOMPT.

Extrae [1], a tool for capturing execution trace with interfaces for MPI,
OpenMP, pthreads, OmpSS and CUDA. Captured data can be later viewed with
Paraver [16] visualization tool. Although data collection using OMPT interface
is supported, it has the same limitations as Score-P.

Finally Intel VTune [2] does not support OMPT and uses VTune instrumen-
tation API in the OpenMP runtime in addition to the sampling based profiling.

7 Conclusion and Future Work

We presented AfterOMPT, an OMPT-based tool for tracing, visualization
and performance analysis of OpenMP applications that is portable across OpenMP
runtimes. We motivated an extension of the OMPT interface that allows for fine-
grained analysis of parallel loops. We showed that our tool allows for a detailed
analysis of both loop-based and task-based applications. With a tracing over-
head as little as 200 cycles per OMPT callback function, the resulting increase
in the execution time is less than 5% for many benchmarks and only leads to a
significant increase for very fine-grained work sharing. In the future we plan to
extend our tool further with the visualization of tasks trees and also integrate
OpenMP hardware event profiling proposed before in [14].

References

1. Extrae. https://tools.bsc.es/extrae, Accessed: 2020-05-25
2. Intel VTune Profiler. https://software.intel.com/content/www/us/en/develop/

tools/vtune-profiler.html, Accessed: 2020-05-25
3. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L.,

Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., et al.: The NAS
parallel benchmarks. The International Journal of Supercomputing Applications
5(3), 63–73 (1991)

4. Drebes, A., Bréjon, J.B., Pop, A., Heydemann, K., Cohen, A.: Language-centric
performance analysis of OpenMP programs with Aftermath. In: International
Workshop on OpenMP. pp. 237–250. Springer (2016)

5. Drebes, A., Pop, A., Heydemann, K., Cohen, A.: Interactive visualization of cross-
layer performance anomalies in dynamic task-parallel applications and systems.
In: 2016 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). pp. 274–283. IEEE (2016)

6. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona OpenMP
tasks suite: A set of benchmarks targeting the exploitation of task parallelism in
OpenMP. In: 2009 international conference on parallel processing. pp. 124–131.
IEEE (2009)

https://tools.bsc.es/extrae
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html

Tracing of tasks and loops with AfterOMPT 15

7. Eichenberger, A.E., Mellor-Crummey, J., Schulz, M., Wong, M., Copty, N., Di-
etrich, R., Liu, X., Loh, E., Lorenz, D.: OMPT: An OpenMP tools application
programming interface for performance analysis. In: International Workshop on
OpenMP. pp. 171–185. Springer (2013)

8. Feld, C., Convent, S., Hermanns, M.A., Protze, J., Geimer, M., Mohr, B.: Score-P
and OMPT: Navigating the perils of callback-driven parallel runtime introspection.
In: International Workshop on OpenMP. pp. 21–35. Springer (2019)

9. Itzkowitz, M., Mazurov, O., Copty, N., Lin, Y., Lin, Y.: An OpenMP runtime
API for profiling. OpenMP ARB White Paper (2007), Available online at http:
//www.compunity.org/futures/omp-api.html

10. Langdal, P.V., Jahre, M., Muddukrishna, A.: Extending OMPT to support grain
graphs. In: International Workshop on OpenMP. pp. 141–155. Springer (2017)

11. Lorenz, D., Dietrich, R., Tschüter, R., Wolf, F.: A comparison between OPARI2
and the OpenMP tools interface in the context of Score-P. In: International Work-
shop on OpenMP. pp. 161–172. Springer (2014)

12. Muddukrishna, A., Jonsson, P.A., Podobas, A., Brorsson, M.: Grain graphs:
OpenMP performance analysis made easy. In: Proceedings of the 21st ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming. pp. 1–13.
ACM (2016)

13. Müller, M.S., Knüpfer, A., Jurenz, M., Lieber, M., Brunst, H., Mix, H., Nagel,
W.E.: Developing scalable applications with Vampir, VampirServer and Vampir-
Trace. In: PARCO. vol. 15, pp. 637–644 (2007)

14. Neill, R., Drebes, A., Pop, A.: Accurate and complete hardware profiling for
OpenMP. In: International Workshop on OpenMP. pp. 266–280. Springer (2017)

15. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face (Version 5.0) (2018)

16. Pillet, V., Labarta, J., Cortes, T., Girona, S.: Paraver: A tool to visualize and
analyze parallel code. In: Proceedings of WoTUG-18: transputer and occam devel-
opments. vol. 44, pp. 17–31 (1995)

http://www.compunity.org/futures/omp-api.html
http://www.compunity.org/futures/omp-api.html

	AfterOMPT: An OMPT-based tool for fine-grained tracing of tasks and loops

